background image

Acta Scientiarum 


ISSN printed: 1679-9283 
ISSN on-line: 1807-863X 
Doi: 10.4025/actascibiolsci.v39i3.35569 


Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 301-307, July-Sept., 2017 

Giant african snail, Achatina fulica (Férussac, 1821): an 

environmental and public health problem in the northwestern of 

Paraná State, Brazil 

Márcia Aparecida Andreazzi, Francielli Gasparotto, Ednéia Aparecida de Souza Paccola, 
Cleiltan Novais da Silva, Aparecida de Fátima Cracco Rodrigues and Maria de los Angeles 
Perez Lizama



Programa de Pós-graduação em Tecnologias Limpas, Centro Universitário de Maringá, Av. Guedner, 1610, Bloco 7, 87050-390, Maringá, Paraná, 
Brazil. *Author for correspondence. E-mail: maria.lizama@unicesumar.edu.br  

ABSTRACT. Achatina fulica, known as Giant African Snail (GAS), was introduced in Brazil as a substitute 
for the European escargot, Helix aspersa maxima. However, its cultivation was abandoned and the mollusk 
became an invasive species, found throughout Brazil and causing damage to health and the environment. 
In this context, this study analyzed the knowledge of the population about the damage caused by GAS, 
seeking to reveal a regional scenario on this issue. This exploratory and cross-sectional study was conducted 
by means of a questionnaire applied to 150 people, which obtained sociodemographic characteristics of 
respondents and specific responses about the knowledge and handling of GAS. The results showed that 
most of the respondents know the snail and are concerned about the transmission of diseases and losses in 
agricultural crops, but few recognize this pest as the basis of environmental imbalance. It is suggested to 
implement actions seeking the dissemination of such knowledge and the awareness of the population about 
the impact of this mollusk on the environment.


Keywords: mollusk, introduced species, environment, social study. 

Caramujo africano, Achatina fulica (Férussac, 1821): um problema ambiental e de saúde 

pública no Noroeste do Paraná, Brasil 

RESUMO. Achatina fulica, conhecida como caramujo gigante africano, foi introduzida no Brasil como um 
substituto do escargot europeu, Helix aspersa maxima. Contudo, seu cultivo foi abandonado e o molusco 
transformou-se numa espécie invasora, presente em todo o território brasileiro, provocando danos à saúde 
e ao meio ambiente. Assim, objetivou-se, com este trabalho, analisar o conhecimento da população sobre os 
danos causados pelo caramujo gigante africano, buscando evidenciar um cenário regional sobre esta 
problemática. A pesquisa teve caráter exploratório e transversal e foi realizada por meio da aplicação de um 
questionário para 150 pessoas, por meio do qual foram obtidas as características sociodemográficas dos 
respondentes e respostas específicas sobre o conhecimento e o manuseio do caramujo africano. Os 
resultados deste estudo mostraram que a maioria dos respondentes conhece o caramujo africano e se 
preocupa com a transmissão de doenças e com os prejuízos em culturas agrícolas, porém poucos 
reconhecem essa praga como base de desequilíbrios ambientais. Sugere-se que ações sejam implementadas, 
buscando a disseminação desses conhecimentos e a conscientização da população sobre o impacto desse 
molusco no meio ambiente. 

Palavras-chave: molusco, espécies introduzidas, meio ambiente, estudo social. 


The land snail Achatina fulica (Férussac, 1821), 

known as Giant African Snail (GAS), is native to the 

Central Northeast coast of Africa and is found on all 

continents (Prasad, Singh, Senani, & Medhi, 2004; 

Mata & Mata, 2012; Almeida, 2016). It was 

introduced in Brazil in the end of 1980s as an option 

for the consumption of escargot, however, the 

commercial and marketing failure generated  surplus 

populations released in natural ecosystems, 
agricultural and urban areas, which resulted in 
ecological, health and agricultural threats. 

The problems caused by this snail led to the 

enactment of Normative Instruction 73 of August 


, 2005, based on Law 5,197 and the 

commitments set by the Convention on Biological 
Diversity, which considered that A. fulica did not 
belong to the Brazilian wildfauna and therefore 

background image


Andreazzi et al. 

Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 301-307, July-Sept., 2017 

representing an exotic invasive species harmful to 
native wild species, the environment, agriculture 
and public health (IBAMA, 2005). 

According to the International Union for 

Conservation of Nature (IUCN, 2010), this 

introduced snail is considered a threat to agriculture 

and the environment, whereas without natural 

enemies they reach the plantations, squares and 

gardens, consuming the flora found in those places. 

In agreement with Prasad et al. (2004), the giant 

snail is capable of consuming 500 different types of 

plants, including ornamental plants and agricultural 

crops, besides consuming pebbles, sand, bones and 

even concrete, causing high impacts. 

In several aspects, whether environmental, health 

and agricultural, this species has been increasingly 

recorded in the national territory. After the 

introduction, the African snail has spread through all 

the Brazilian states and because it is true 

hermaphrodite, resistant to the weather variations, 

to diseases, and has high rates of proliferation, feed 

on a wide array of vegetables and able to bury 

themselves in the soil to hibernate during the hottest 

periods of the year, hinder the actions of chemical, 

biological and physical control (Prasad et al., 2004). 

However, the resistance of this invasive species to 

these forms of control also depends on the stage of 

development of the mollusk (Fischer, Simião, 

Colley, Milléo, & Rubio, 2005). 

Some of the types of control are known by 

scientists (Prasad et al., 2004; Souza, Alves, & Alves, 

2007), but the actual damage and the most effective 

forms of control for the eradication of this invasive 

snail are still unknown. 

Thus, this study aimed to analyze the degree of 

knowledge of a group of individuals about the GAS, 

seeking to reveal a regional scenario on this subject.  

Material and methods 

This exploratory and cross-sectional study had 

the participation of 150 individuals of both sexes, 

between 15 and 60 years old, who were visiting an 

agro-environmental event, in the northwestern state 

of Paraná, with participation of rural producers, the 

urban population and students of different areas of 

knowledge and professionals, totaling approximately 

4,000 participants, from more than 40 municipalities 

of the region of Maringá, state of Paraná. The 

research was approved by the ethics committee in 

June 2016, Opinion Number: 1.592.868. 

The questionnaire was applied during the event, 

where the subjects were approached by chance. 

After clarifying the research objectives, highlighting 

the confidentiality in relation to the data and 

ensuring the participant’s freedom to choose to 
respond or not, they signed the informed consent. It 

should be emphasized that the theme was not 

previously discussed with the participants. The 

average data collection time was approximately 10 


For data collection, a questionnaire containing 12 

multiple choice closed questions was applied, where 

several alternatives were presented and the 

respondent indicated only one (single answer) or 

more than one (multiple answers) and were about 

the following aspects: 1) Sociodemographic 

characteristics of the interviewees: the municipality 

where they live, rural or urban area, gender, age and 

schooling level; 2) Specific questions about the 

African snail: knows the snail, knows the damage 

caused by the snail, if so, identify the damages, 

whether to human health, crops or the 

environment; if had contact with the snail, if yes, if 

some form of control was used, if yes, identify the 

form: manual, chemical, others and what was the 

final destination used: incineration, burial, discard. 

The elaboration and analysis of the answers 

considered the assumptions of Bardin (2006). 

Pearson’s “r” coefficient of correlation with 

previous angular transformation was used to 

determine possible correlation between the 

knowledge from damages and age class of the 


Results and discussion 

Data on the sociodemographic characterization 

of interviewees (Table 1) showed that 47.33% live in 

the municipality of Maringá, most of them live in 

urban areas, although a large proportion of these 

residents work in rural areas. From this total, there 

was parity with regard to the gender of the 

participants. Most of the interviewees are young 

people and young adults, aged between 15 and 30 

years (57.33%). Regarding the level of schooling, a 

great part of the interviewees had high school and 


Data collected on the interviewees knowledge 

about the Giant African snail revealed that of the 

total number of interviewees, the majority (72.67%, 

N = 109) had knowlwdge about it. Of these, 

61.47% (N = 67) reported having knowledge about 

the damage caused by this mollusk, and when 

questioned about the type of damage caused, human 

health was the most frequent and the environment 

was the least cited (Table 2). 

Of the total number of individuals who knew the 

damage, 50 (74.64%) related the snail at least once to 

human health, 42 (62.68%) to the crop and 18 

background image

Giant african snail: an environmental and public health problem 


Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 301-307, July-Sept., 2017 

(26.87%) to the environment. The high frequency 
of individuals who have recognized and has the 

perception that this snail can cause harm to health is 

a very positive result and meets the scientific 


Table 1. Frequency of the socio-demographic characteristics of 

the individuals interviewed (N=150). 


Category of the answer 

Frequency (%) 

Municipality of residence 

Maringá 47.33 
Other 52.00 
Not informed 


Residence zone 

Rural 12.67 
Urban 86.00 
Not informed 



Male 50.00 
Female 49.33 
Not informed 


Age class (years old) 

15 - 20 


21 - 25 


26 - 30 


31 - 35 


36 - 40 


41 - 45 


46 - 50 


51 - 55 


56 - 60 


> 60 


Not informed 


Schooling level 

Elementary School 


High School 


Undergraduate student 


Graduate student 


Not informed 



Table 2. Frequency of interviewees aware of the damage caused 

by African snail to human health, crops and the environment (N 
= 67). 

Knowledge of the damages 

Frequency (%) 

Human health 


Crops 19.40 

Environment 2.98 

Human Health and crops 


Crops and environment 


Human, health and environment 


Human health, crops and environment 



Achatina fulica is a public health problem for 

presenting high populations in urban areas and 

being a potential host of numerous disease-causing 

pathogens in humans and animals. Colley and 

Fischer (2009) claimed that the African snail is host 

of nematodes of the species Angiostrongylus costaricensis 

Morera & Cespedes, 1971which causes diseases to 

human (zoonoses) such as angiostrongyliasis or 

abdominal angiostrongylosis. This disease can evolve 

to an intestinal perforation, peritonitis, abdominal 

bleeding and secondary to mesenteric ischemia, and 

pronounced eosinophilia (Prasad et al., 2004; 

Rodriguez et al., 2008), and may even lead to death. 

Although not registered in Brazil, eosinophilic 

meningoencephalitis (meningoencephalitis, 

angiostrongylosis or eosinophilic meningitis) was 

recorded for the first time in Cuba for the helminth 
A. cantonensis (Chen, 1935) in the host Helix pomatia, 

Linnaeus, 1758 (Teles & Fontes, 1998), but it has 

already been recorded in the Pacific islands, in 

Southeast Asia, Australia and the United States 

(Oliveira, Gentile, Maldonado Jr., Torres, & 

Thiengo, 2015). In Brazil, the fact that there are no 

records of diseases or deaths related to the African 

snail, does not indicate that they do not exist or that 

they are not occurring, this can be due to the 

absence of identification of this host as the cause of 

the problems. 

The International Union for Conservation of 

Nature/IUCN (2010) emphasizes giant snail as a 

vector of human diseases. Morocoima et al. (2014) 

stated that A. fulica is a vector of helminths, protozoa 

and bacteria and represents an epidemiological risk 

to public and veterinary health. These pathogens can 

be transmitted to humans  and animals by ingestion 

of vegetable and water contaminated by excreta 

(Faruque, 2012), consumption of raw or 

undercooked snail (Zanol et al., 2010; Vitta, 

Polseela, Nateeworanart, & Tattiyapong, 2011) or by 

improperhandling of live snails, resulting in contact 

of their excreta with the eyes, nose or mouth 

(USDA, 2008). 

A study carried out in Tanzania (Mead, 1979) 

with shells from dead individuals of A. fulica showed 

that, in the period of intense rainfall, the shells were 

home to small populations of Aedes aegypti L., yellow 

fever vector mosquito in this country and dengue 

and dengue-hemorrhagic, in Brazil. This study, 

coupled with the fact that these animals die with the 

shells open facing upwards and that most States 

show heavy rainfall in the summer, lead to the 

supposition that the shells of these animals serve as 

pools of mosquito larvae. Studies demonstrate that 

the A. aegypti mosquito is a potential vector of urban 

yellow fever (Tauil, 2010). Despite the epidemic of 

wild yellow fever that has affected many Brazilian 

states since 2016, and this was last recorded in 1945, 

it is not ruled out that the sick man could become a 

source of infection for A. aegypti in urban areas. In 

this way, it is extremely important to know the 

population about this animal and the appropriate 

forms of control also the shells, thus avoiding the 

increase  of  cases  of  dengue  fever,  zyka  and  records 

of cases of urban yellow fever. 

Shells left in the environment or destined for 

inappropriate disposal constitute a serious health 

problem, since in addition to the cases mentioned 

above, other species of insects, bacteria and rats, 

transmitters of zoonoses, can also use these 

reservoirs as deposits of eggs, refuge or food, as well 

as in the maintenance of their life cycles. 

background image


Andreazzi et al. 

Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 301-307, July-Sept., 2017 

Among the respondents who knew the damage, 

62.68% related these data to crops, whether isolated 

or in conjunction with health and the environment. 

In a research conducted in the State of Paraná, 

Colley and Fischer (2009) reported, based on data 

from the Secretaria de Saúde do Estado do Paraná 

(SESA/PR),  Empresa de Assistência Técnica e Extensão 

Rural (EMATER/PR), Secretaria de Estado da 

Agricultura e Abastecimento do Paraná (SEAB/PR), 

Instituto Agronômico do Paraná (IAPAR) and the 

Ministério da Agricultura, Pecuária e Abastecimento 

(MAPA/PR), that A. fulica is not considered an 

agricultural pest at the damage is occasional and 

local. In turn, Fischer, et al. (2005) also observed the 

occurrence of this snail in several municipalities of 

the Paraná coast, such as Pontal do Paraná, 
Guaraqueçaba and Paranaguá, but in this study, A. 

fulica is considered an agricultural pest and can be 

found in gardens, dumps, wastelands and 

ornamental plants. 

Currently, the fact of not being considered 

agricultural pest is controversial, since economic 

losses in crops occur on a small scale compared to 

other pests. However, in the case of family farming 

or organic production, the impact is more severe. It 

should be noted that there is a lack of sufficient 

information or analysis to identify these impacts. 

This snail, besides Brazil, has already been 

recorded in Latin America in Argentina, Paraguay, 

Colombia, Ecuador, Peru and Venezuela. Its 

distribution is due not only to the dispersion of 

populations but also due to the transportation 

carried out by fishermen, who use this snail as bait, 

sold in petshops, or transported along with solid 

residues, plants and building material (Vogler et al., 


Considering the isolated and associated answers, 

it was possible to verify that the large minority of the 

interviewees (26.87%) is unaware of the fact that this 

mollusk can affect the environment. This evidences 

the limited knowledge of these individuals in 

relation to the different forms of aggression that the 

environment can suffer, including the inherent 

damages to the snail, an exotic species, which due to 

the absence of natural enemies and its voracious 

appetite can generate environmental imbalances 
(IUCN, 2010). In this sense, it is evident that the 

environmental factor is clearly neglected, and among 

respondents, there is no identification of natural or 

degraded environment. Another important factor is 

the fact that the mucus produced by the snail can 

inhibit the presence of Megalobulimus sp., a snail 

native to the Brazilian fauna (Colley, 2010). 

By relating the age classes of the participants, in 

the group that is aware of the damages that the snail 

promotes, the majority (62.39%) presented a high 
level of schooling (graduate or postgraduate 

student), and only 11.09% presented complete or 

incomplete elementary school. 

This result leads to suppose that the 

dissemination of knowledge is occurring within 
higher education institutions, since the knowledge 
of interviewees with lower ages and education level, 
presented low percentages of information. 

A comparative analysis of knowledge of damage 

per age group  (Figure 1) showed almost 60% of the 
interviewees aged less than or equal to 30 years had 
knowledge of these damages. Despite this, no 
presented significant correlation between knowledge 
of these damages and age class (r= -0.4667, 



Figure 1. Frequency (%) of interviewees that know the damages 
produced by the African snail Achatina fulica per age class (N = 

Another important result observed is that only 

43.11% (N = 47) of the respondents who informed 
knowing the snail answered that they had used some 
form of control, most notably the manual collection 
(Figure 2). Despite the low frequency, the form of 
chemical control identified in the research consisted 
in the use of salt or lime on the snails. These 
methods are also reported in studies conducted by 
Durço, Vargas, Silva, and Carraro (2012). 

Manual collection, regular and safe, followed by 

incineration, has been shown to be a recommended 

and efficient method in several countries (Almeida, 

2016). However, its efficiency depends on several 

combined actions and involvement of society. The 

success of manual control depends on a prior 

diagnosis of the population structure of A. fulica by 

professionals, who should monitor the collection to 

be performed in a standard management, in addition 

to inspect that native mollusks are not accidentally 

slaughtered in place of the invasive species (Colley, 

2010). As the general society be unable to 

background image

Giant african snail: an environmental and public health problem 


Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 301-307, July-Sept., 2017 

distinguish correctly the invasive species from the 
native species, manual catch has resulted in threats 

to native species such as Megalobulimus sp. (Colley & 

Fischer, 2009), which is harmless and flagship 

species of the Atlantic Forest (Pecora & Miranda, 

2014). Campaigns should be made with caution so 

as not to induce the population to inadvertently 

exterminate any mollusk species, since there are 

several native mollusks. 



Figure 2. Frequency of respondents who had contact and who 
used forms of control against the African snail Achatina fulica

The various forms of control, management and 

eradication of the snail are derived from chemical, 

biological and physical control. The use of chemicals 

is an alternative widely used in several countries, but 

it is not always successful. Molluscicides are 

composed of metaldehyde, carbamates and 

phosphate iron, but their use in urban, agricultural 

or natural environments requires legal authorization 

from the Agência Nacional de Vigilância Sanitária 

(ANVISA),  Ministério da Agricultura, Pecuária e 

Abastecimento (MAPA) and Instituto Brasileiro do Meio 

Ambiente e dos Recursos Naturais e Renováveis (IBAMA).  

According to ANVISA (2017), currently, in 

Brazil, granulated baits, metaldehyde-based, are 

commercially marketed with a maximum 

concentration of 5.0% w / w, for the chemical 

control of the mollusk, and these products are only 

released as household sanitizers. 

In an attempt to find synthetic muliscicidas for 

the control of A. fulica, a study was conducted by 

Mata and Mata (2012), which used granulated baits, 
but no efficacy was found for any of these 

substances. The use of pesticides can cause toxicity 

problems for humans, domestic animals and the 

environment (Souza et al., 2007).  

Biological control is based on the use of natural 

enemies, such as pathogens, predators and parasites, 

aiming to control growth or exterminate the snail 

(Colley, 2010). Natural predators, also called 

malacophagous species, have been considered by 

several researchers but these predators are also exotic 

and can become pests, beyond the risk of not only 
preying upon A. fulica, but also negatively affecting 

other species (Souza et al., 2007). Thus, according to 

Prasad et al. (2004), the biological control performed 

by malacophagous species is inadvisable. Although 

there are several reports in the literature, the 

biological control of A. fulica is not very effective. 

The most cited physical control consist of: 

directed planting, physical barriers, sanitation and 
manual collection. Targeted  planting  is  an 
alternative that can be used to reduce the losses 
caused by the snail. This technique is based on 
intercropping, both in agriculture and in gardening, 
of plants not appreciated by the mollusk, reducing 
the probability of invasion (Colley, 2010). In this 
sense, Prasad et al. (2004) suggested the use of 
Annona glabra L. (Annonaceae), a plant resistant to 
snails and the Global Invasive Species Programmee 
(IUCN, 2010) suggests the use of the fruit of 
Thevetia peruviana (Pers.) Schum or yellow oleander, 
which also have action against the African snail, 
although it should be considered the toxicity of this 
plant for humans (Teixeira, Mazutti, Gontijo, Silva, 
& Ogawa, 2013).  

Physical barriers can prevent or reduce the 

dispersal of snails. They may be extensive strips of 
bare soil or gutters that prevent the movement of 
mollusks or may provide direct protection to the 
plant with the use of screens or paper (Colley, 
2010). Nevertheless, these barriers have limited 
efficiency and require constant maintenance. 

The role of sanitation in the control of snail is a 

fundamental point to be considered, since it is 
known that poorly preserved areas, with 
accumulation of waste and debris favor the 
establishment of the African snail population 
(Colley, 2010). 

The monitoring by trained professionals should 

be carried out so that control measures such as use 
of pesticides, mainly illegal ones, salt, lime and 
bleach are not used in other native mollusks, which, 
in the long term, can be extremely harmful to the 
environment. Unfortunately, even in small 
numbers, this research showed that some 
individuals interviewed who had contact with the 
snail used salt or lime to control the snails, reflecting 
the lack of information from these individuals 
regarding this subject. 

In a similar study with students of a school in the 

state of Pernambuco, the authors also verified that 
the best known method used by the interviewees is 
the manual collection and destruction of the 
animals, in order to keep the populations of the 
molluskat acceptable levels (Souza et al., 2007). 

background image


Andreazzi et al. 

Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 301-307, July-Sept., 2017 

After the application of the control measure, the 

final destination of the snail was very variable, 

however, incineration and disposal in the garbage 

were the main forms (Figure 3). 



Figure 3. Frequency of final destination forms of the African 
snail Achatina fulica. 

Boaventura (2011) stated that the mollusk can be 

incinerated, provided that under suitable conditions 

with the use of an incinerator, oven or brass, or 

crushed and buried in deep ditch, throwing 

limestone on the bottom and on the top, to avoid 

contamination of groundwater, mainly in cases of 

large quantities collected. According to Colley 

(2010), burial measures are not sufficient and the 

destination, in the case of live animals, to the system 

of garbage collection or release in lakes, rivers or the 

sea hardly leads the mollusks to death, being able to 

transfer and disseminate the snails to other locations. 

According to the author, the destination of 

slaughtered snails should be discussed with the 

authorities, since the same, since Normative 

Instruction 73, of August 18


, 2005, the competent 

federal, State and municipal bodies, as well as non-

governmental organizations with proven experience 

in the area, were authorized to implement measures 

to control, collect and eliminate the snail A. fulica, as 

a way tocontain the current invasion of this mollusk 

in urban, rural and natural environments (IBAMA, 


Worldwide, manual and regular collection, 

always with the use of personal protective 

equipment, mainly gloves, followed by incineration, 
has been shown to be a more efficient method to 

date (Almeida, 2016). 


The results of the present study enabled to 

establish that most of the interviewees have 

knowledge about the African snail and in relation to 

the damage that it can cause, the majority showed 

concern about the transmission of diseases and the 

damage to crops, however, the attention to the fact 

that this pest can be considered the basis of 
environmental imbalances was recognized by a low 

number of respondents. This evidences that the 

environmental factor is clearly neglected, which is 

worrisome, especially nowadays, when the search 

for a balanced environment is fundamental. 

In this way, it is suggested to implement actions 

to disseminate this knowledge and raise the 

population’s awareness about health and the 

environment. Sucessful experiences point out the 

dissemination of knowledge, associated with 

ongoing and responsible actions involving the 

population and trained professionals in the areas of 

health, environment and agriculture strengthens 

control actions. 


The authors thanks to Instituto Cesumar de Ciência, 

Tecnologia e Inovação (ICETI/UniCesumar) and 

Coordenação de Aperfeiçoamento de Pessoal de Nível 
 (CAPES) by financial support. 


Agência Nacional de Vigilância Sanitária [ANVISA]. 

(2017).  Listas de ingredientes ativos com uso autorizado e 
banidos no Brasil – M09 - Metaldeído
. Retrieved from: 

Almeida, M. N. (2016). Caramujo africano: apenas uma 

espécie introduzida ou um problema de saúde pública? 
Acta Biomedica Brasiliensia7(2), 76-86. 

Bardin, L. (2006). Análise de conteúdo (L. A. Rego, A. 

Pinheiro, trads.) Lisboa: Edições 70.   

Boaventura, M. F. F. (2011). Infestações por caramujo 

africano (Achatina fulica): análise de conteúdo das 
matérias jornalísticas e de materiais educativos sobre o 
tema no Rio de Janeiro, Brasil. Revista Brasileira de 
Pesquisa em Educação em Ciências
11(2), 9-24. 

Colley, E. (2010). Medidas de controle do Achatina fulica

In M. L. Fischer, L. C. M. Costa (Eds.),  O Caramujo 
Gigante Africano A. fulica no Brasil
 (p. 203-228, Coleção 
Meio Ambiente). Curitiba, PR: Editora Champagnat – 

Colley, E., & Fischer, M. L. (2009). Avaliação dos 

problemas enfrentados no manejo do caramujo gigante 
africano  Achatina fulica (Gastropoda: Pulmonata) no 
Brasil. Zoologia26(4), 674-683. 

Durço, E., Vargas, T., Silva, L., & Carraro, V. M. (2012). 

Conhecimento popular: impactos e métodos de 
controle de Achatina fulica em Valença – RJ, Brasil. 
Biotemas26(1), 189-196. 

Faruque, S. M. (2012). Introduction 3-11. In  S. M. 

Faruque (Ed.), Foodborne and waterborne bacterial 
pathogens: Epidemiology, Evolution and Molecular biology

Norfolk, UK: Caister Academic Press. 

Fischer, M. L., Simião, M. S., Colley, E., Milléo, L. C., & 

Rubio, G. (2005). Panorama do caramujo gigante africano 

background image

Giant african snail: an environmental and public health problem 


Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 301-307, July-Sept., 2017 

Achatina fulica Bowdich, 1822 no estado do Paraná: o 
provável ponto de entrada da espécie invasora no Brasil

Retrieved from: www.mma.gov.br/estruturas/174/_ 

Instituto Brasileiro do Meio Ambiente e dos Recursos 

Naturais Renóvaveis [IBAMA]. (2005). Instrução 
normativa nº 73, de 18 de agosto de 2005
. Retrieved from: 

International Union for Conservation of Nature [IUCN]. 

(2010). Impact of nature’s invading aliens measured for first 
. Press Release 22 January 2010. Retrieved from: 

Mata, A. S. P., & Mata, A. C. P. R. (2012). Eficiência na 

utilização de iscas granuladas no controle de caramujo-
africano (Achatina fulica) Bowdich, 1822

.  Engenharia 

Ambiental9(3), 223-232. 

Mead, A. R. (1979). Economic malacology: with particular 

reference to Achatina fulica in pulmonates. In V. 
Fretter, P. Peake (Eds.), Pulmonates (v. 2B, p. 1-150). 
London, UK: Academic Press.   

Morocoima, A., Rodríguez, V., Rivas, R., Coriano, H., 

Rivero, S., Errante, R., & Urdaneta-Morales, S. 
(2014).  Achatina fulica Bowdich, 1822 (Mollusca, 
Gastropoda, Achatinidae) carrier of Helminthes, 
Protozoa and Bacteria in northeast Venezuela. Boletín 
de Malariología y Salud Ambiental, 54
(2), 174-185.  

Oliveira, A. P. M., Gentile, R., Maldonado Jr. A., Torres, 

E. J. L., & Thiengo, S. C. (2015). Angiostrongylus 
 infection in molluscs in the municipality of 
São Gonçalo, a metropolitan area of Rio de Janeiro, 
Brazil: role of the invasive species Achatina fulica in 
parasite transmission dynamics. Memorias do Instituto 
Oswaldo Cruz
110(6), 739-744.  

Pecora, I. L. & Miranda, L. S. (2014). Salvando e 

aprendendo com Megalobulimus.  Revista de Ciência e 
10(1), 72-82.  

Prasad, G.  S., Singh, D. R., Senani, S., & Medhi, R. P. 

(2004). Eco-friendly way to keep away pestiferous 
Giant African snail, Achatina fulica Bowdich from 
nursery beds. Current Science87(12), 1657-1659. 

Rodriguez, R., Dequi, R. M., Peruzzo, L., Mesquita, P. 

M., Garcia, E., & Fornari, F. (2008) Abdominal 
angiostrongyliasis: report of two cases with different 
clinical presentations. Revista do Instituto de Medicina 
50(6), 339-341.    

Souza, R. M., Alves, Â. G. C., & Alves, M. S. (2007). 

Conhecimento sobre o molusco gigante africano 
Achatina fulica entre estudantes de uma escola pública 
na Região Metropolitana do Recife. Biotemas,  20(1), 

Tauil, P. L. (2010). Aspectos críticos do controle da febre 

amarela no Brasil. Revista de Saúde Pública44(3), 555-

Teixeira, L. A. J., Mazutti, A. R.,  Gontijo,  E. E. L., Silva, 

M. G., & Ogawa, W. N. (2013) Aspectos toxicológicos 
de Thevetia peruviana e perfil dos usuários em Gurupi-
TO. Revista Científica do ITPAC6(4), 1-11. 

Teles, H. M. S., & Fontes, L.R. (1998). Angiostrongilíase e 

escagot: nova ameaça a saúde pública. Cadernos de 
30, 24-26. 

United States Department of Agriculture. National 

Invasive Species Information Center [USDA]. (2008). 
Achatina fulica Bowdich; Giant African Land Snail. 
Retrieved from: http://www.invasivespeciesinfo. 

Vitta, A., Polseela, R., Nateeworanart, S., & Tattiyapong, 

M. (2011). Survey of Angiostrongylus cantonensis in rats 
and giant african land snails in Phitsanulok province, 
Thailand. Asian Pacific Journal of Tropical Medicine, 4(8), 

Vogler, R. E., Beltramino, A. A., Sede, M. M., Gregoric, 

D. E. G., Núñez, V., & Rumi, V. (2013). The giant 
African snail, Achatina fulica (Gastropoda: Achatinidae): 
Using bioclimatic models to identify South American 
areas susceptible to invasion. American Malacological 
31(1), 39-50. 

Zanol, J., Fernandez, M. A., Oliveira, A. P. M., Russo, A. 

P. M., Russo, C. A. M., & Thiengo, S. C. (2010). O 
caramujo exótico invasor Achatina fulica 
(Stylommatophora, Mollusca) no Estado de Rio de 
Janeiro (Brasil): situação atual. Biota Neotropical, 10(3), 



Received on February 23, 2017. 
Accepted on April 24, 2017. 



License information: This is an open-access article distributed under the terms of the 
Creative Commons Attribution License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 





  • Não há apontamentos.

Acta Scientiarum. Biological Sciences
Avenida Colombo, 5790
CEP 87020-900 - Maringá - PR
Tel: (+55 44) 3011-4253
Fax: (+55 44) 3011-4253