/work/vetindex/tasks/simple_ojs_harvester/journals/full_text-html.html
background image

Acta Scientiarum 

 

http://www.uem.br/acta 
ISSN printed: 1679-9283 
ISSN on-line: 1807-863X 
Doi: 10.4025/actascibiolsci.v39i3.27787 

 

Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 275-282, July-Sept., 2017 

Influence of natural radon and metal contamination on surface 

water quality from a Brazilian Semiarid Region  

Richelly da Costa Dantas

1

, Julio Alejandro Navoni

1

, Douglisnilson de Morais Ferreira

2

, Thomas 

Ferreira da Costa

3

, Sílvia Regina Batistuzzo de Medeiros

4

 and Viviane Souza do Amaral

1,4*

 

1

Programa de Pós-Graduação em Desenvolvimento e Meio-Ambiente, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, 

Brazil. 

2

Laboratório de Radioatividade Natural, Departamento de Geologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do 

Norte, Brazil. 

3

Núcleo de Análises de Águas, Alimentos e Efluentes, Instituto Federal de Tecnologia do Rio Grande do Norte, Natal, Rio Grande 

do Norte, Brazil. 

4

Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Av. 

Salgado Filho, s/n, Campus Universitário, Lagoa Nova, 59072-970, Natal, Rio Grande do Norte, Brazil. *Author for correspondence. E-mail: 
vi.mariga@gmail.com
 

ABSTRACT. The Brazilian semiarid region presents some adverse environmental conditions for the 
settled population such as a restricted water availability and the presence of radon and metal natural sources 
that can contaminate the water reservoirs and consequently become a concern for human health. The 
present study evaluated the water quality of the Riacho das Cachoeiras Dam located in the urban area of 
Lajes Pintadas (state of Rio Grande do Norte, Brazil) as source for human consumption. An analysis of 
Physicochemical parameters, heavy metal content and Radon in water samples was performed along with 
the assessment of the water mutagenic potential through Micronucleus Test (MN) on Tradescantia pallida 
and  Oreochromis niloticus. The content of metals in water for Al, Cd, and Ni were above water quality 
guidelines for human consumption. Moreover, high levels of Pb along with dissolved Radon were found. 
An acute and chronic mutagenic water capability was observed. These findings demonstrated that the water 
quality is unsuitable for human consumption due to the presence of high levels of contaminants mainly 
from geogenic origin and its deleterious effect on living systems.

 

Keywords: radiation, lead, mutagenicity, micronucleus, geogenic contamination. 

Influência da contaminação natural pelo radônio e metais na qualidade das águas 

superficiais da Região Semiárida Brasileira 

RESUMO. A região semiárida brasileira apresenta condições ambientais adversas para população local, 
como a escassez na disponibilidade de água e a presença de fontes naturais de radônio e de metais que 
podem contaminar os reservatórios de água e, consequentemente, tornar-se um problema de saúde 
humana. O estudo avaliou a qualidade da água do Açude do Riacho das Cachoeiras localizado na área 
urbana de Lajes Pintadas (Rio Grande do Norte, Brasil) como fonte para o consumo humano. Foram 
realizadas análises físico-químicas, de conteúdo de metais e de radônio em amostras de água em conjunto 
com a avaliação do potencial mutagênico da água por meio do teste de micronúcleos (MN) em Tradescantia 
pallida
 e Oreochromis niloticus. Os metais Al, Cd, e Ni estavam acima das diretrizes de qualidade da água para 
o consumo humano. Além disso, foram encontrados altos níveis de Pb dissolvido, juntamente com o 
radônio. Observou-se um potencial de indução de efeito mutagênico nas amostras de água testadas, tanto 
na exposição aguda quanto na crônica. Estes resultados demonstram que a qualidade da água do Açude está 
imprópria para o consumo humano devido à presença de elevados níveis de contaminantes de origem 
geogênica, com capacidade de exercer efeito deletério sobre os organismos. 

Palavras-chave: radiação, chumbo, mutagenicidade, micronúcleos, contaminação geogênica. 

Introduction 

The Brazilian semiarid region covers a surface of 

one million of Km

2

, 12% of the national territory, 

where more than 22 million of inhabitants face an 
adverse environmental scenario due to water scarcity 
(IBGE, 2016). Low rainfall rate along with long 
periods of drought led to build water reservoirs 
(dams), aimed to counteract the hydric  needs of  the 

population (INSA, 2014). Apart from that, some 
geochemical caracteristics (e.g. the presence of some 
earth’s crust constituents) can negatively affect water 
quality by lixiviation, run off and leaching processes 
turningthe available water a potential vector for 
dissemination of toxic substances. Water potability 
monitoring of these reservoirs involves the 
assessment    of    general    characteristics    such    as 

/work/vetindex/tasks/simple_ojs_harvester/journals/full_text-html.html
background image

276 

Dantas et al. 

Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 275-282, July-Sept., 2017 

microbiological and physicochemical parameters 
without considering certain aspects of the involved 
environment that could become a toxicological 
human health concern (CONAMA, 2005). The 
terrestrial crust from the Brazilian semiarid territory 
has one of the most important reservoirs of uranium 
worldwide (IAEA, 2009). The presence of crystalline 
(metamorphic and granitic) rocks in the region can 
lead to enrich water sources with uranium and/or its 
by-products such as Radon (

222

Rn) an Lead (Pb) 

(CPRM, 2013). These uranium by-products have 
some toxicological characteristics to be taken into 
account. The former is an unstable gaseous 
radionucleide catalogued as a proven human 
carcinogen (IARC, 2009). Radon is considered the 
second cause of lung cancer worldwide (IAEA, 2009; 
WHO, 2009). The second, besides to promote a 
variety of toxicological effects on exposed population 
(e.g., cognitive dysfunction, neurobehavioral 
disorders, renal damage, hypertension) has been 
catalogued as a probable human carcinogen (IARC, 
2009; Beyersmann & Hartwig, 2008; Martínez, 
Alvez, & Barbieri, 2013). 

Despite the scientific evidence of uranium by-

products toxicity little is known about these 
elements as potential human health concern in 
Brazil, (Bonotto, 2014; Santos & Bonotto, 2014) and 
in areas with restricted accessibility to water such as 
the Brazilian northeast no reports were found in the 
scientific literature yet. 

In this context, due to the complexity of the 

resulting toxic mixture to be taken into account, 
additional analytical approaches to determine the 
toxicological effect of the substance/s present in 
water samples can be performed. Mutagenicity tests 
have been applied to evaluate different pollutants 
and contaminants in freshwater ecosystems (Misík, 
et al., 2011; Vincent-Huber, Heas-Moisan, & 
Munschy, 2012). Micronuclei (MN) test is one of 
the  most  used  assays  in  different  models  to 
determine chromosomal damage  caused  by  the 
presence of compounds and mixture of substances 
(Misík, et al., 2011; Garcia et al., 2011; Hoshina, 
Angelis, & Marin-Morales, 2008). Tradescantia pallida 
plants have been widely used to perform 
micronuclei test provingto be an excellent 
biondicator for environmental quality assessment 
(Garcia et al., 2011; Leal, Crispim, Frota, Kelecom, 
& Silva, 2008; Thewes, Endres Júnior, & Droste, 
2011). In the same way, the use of Oreochromis 
niloticus  
fish due to its capability of adaptation to 
different environmental conditions, have also been 

extensively used in freshwater reservoirs to perform 
this mutagenic assay (Hoshina et al., 2008; Carvalho, 
Bernusso, Araújo, Espíndola, & Fernandes, 2012; 
Soliman & Ibrahim, 2012). Facing a probably natural 
contamination due to the geological characteristics 
of the Brazilian semiarid region, the adverse climatic 
conditions that lead to restrict the water availability 
for the population and the absence of studies of 
water quality of the Riacho das Cachoeiras Dam, a 
strategic regional water reservoir, the present study 
aimed to evaluate water quality for human 
consumption considering i) the assessment of radon 
and metal contamination and ii) the evaluation of 
mutagenic effect using micronuclei tests in 
Tradescantia pallida and Oreochromis niloticus.. 

Material and methods 

Area of study and sampling points 

The city of Lajes Pintadas is located in the 

Brazilian semiarid region, 135 km away from the 
capital of Rio Grande do Norte. According to the 
2010 census, the city has a population of 4614 
inhabitants (IBGE, 2016). The Riacho das 
Cachoeiras Dam (6,000,000 m

3

 of capacity) is a rain 

water reservoir located within the city limits and is 
used for aquaculture, irrigation, recreation, fishing 
activities and as drinking water source.  

As sampling points for collecting water samples 

in the dam, three georeferenced points were chosen, 
indicated as P1 (6° 8' 30.08" S, 36° 6' 54.39" W), P2 
(6° 8' 37.26" S, 36° 6' 55.78" W) and P3 (6° 8' 41.53" 
S, 36° 7' 0.46" W) (Figure 1). 

Sample collection  

The sample collection was performed on 

December 2011. It consisted in the collection of 1 
liter of surface water taken at 1-meter deep per 
sampling point from the Riacho das Cachoeiras 
Dam collected in polyethylene flasks, previously 
soaked in 20% v/v nitric acid, rinsed with distilled 
water and dried. No conservatives were used and the 
samples were kept frozen at -20°C until analysis, in 
accordance to the American Public Health Association 
(APHA; AWWA; WPCF, 2005). 

Fish sampling was performed by handicraft 

capture. The specimens for control group were 
obtained from an aquarium and acclimatized in 
chlorine-free water for a period of 120 days before 
the experimental assay. The use of fishes in this 
research was conducted in accordance with the 
National guidelines for animal welfare. 

/work/vetindex/tasks/simple_ojs_harvester/journals/full_text-html.html
background image

Influence of natural radon and metal contamination on surface water quality 

277 

Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 275-282, July-Sept., 2017 

 

 

Figure 1. Geographic location of Lajes Pintadas (Rio Grande do Norte, Brazil), the Riacho das Cachoeiras dam and the sampling points. 

Adapted from Google Earth. 

 

Water samples analysis 
Physicochemical analysis: 

For the physicochemical analysis of water, a 

multiparameter equipment for in situ measurements 

(In-Situ inc, model Troll 9000 Pro XP) was used. 

The parameters measured were pH, turbidity, 

temperature, conductivity and dissolved oxygen. 

The results obtained were compared with the 

national guideline for water quality for human 

consumption (CONAMA, 2005). 

Metal analysis: 

Metal analysis in water samples (Al, Cd, Co, Cu, 

Pb, Cr, Fe, Mn, Ni, Ag, and Zn) was performed by 

atomic absorption spectrophotometry. as described 

in APHA; AWWA; WPCF, (2005). Brieffly 4 ml of 

concentrated nitric acid was added into 250 ml of 

sample and then evaporated to near 10 ml in a hot 

plate. Then 2.5 ml of clolhidric acid were added and 

the mixture heated for 30 min. Then dried and 

reconstituted in a volumetric flask to 50 ml using 

deionized water.  

The equipment used was a flame atomic 

absorption spectrophotometer (Varian model 50B). 

Every sample was measured by triplicate. 

Calibration standards along with spiked deionized 

water aliquots (used as internal quality control) were 

prepared with reagents (Specsol) traceable to The 

Institute of Standards and Technology (NIST). 

Analysis of Radon: 

Radon quantification was conducted by 

emanometry, by long period electret method using a 
RADELEC equipment (L-PERM ®) as described 
by Kotrappa (2008). Measurement was performed 
after five minutes of instrument stabilization. Every 
sample was measured by triplicate and an 
instrument sensitivity quality control was performed 
using a reference zero electret after every sample 
batch measured.  

Mutagenicity analysis 

Micronuclei tests in Tradescantia pallida (Trad-MCN): 

Trad-MCNwas performed following the 

protocol described by Ma (1981). Briefly, young 

inflorescences were collected and then packed and 

put in hydroponic systems through three stages: (i) 

adaptation, (ii) exposure (12 hours), and (iii) 
recovery. For positive and negative control, a 

/work/vetindex/tasks/simple_ojs_harvester/journals/full_text-html.html
background image

278 

Dantas et al. 

Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 275-282, July-Sept., 2017 

solution of 0.2% formaldehyde and Hoagland 
solution during the three stages were used 

respectively. After the hydroponic stage, the buttons 

containing the anthers were placed in fixative 

solution (acid acetic and ethylic alcohol 1:3) for 48 

hours, and then stained with 2% acetic carmine. Ten 

slides were assayed and a total of 3000 cells in the 

tetrad stage per sample/control were analyzed using 

a 1000 x oil-immersion lens.  

Micronucleus assays in O. niloticus erythrocytes: 

Micronucleus assays in Oreochromis niloticus was 

performed following the protocol described by 

Çavas & Ergene-Gözükara (2005). Twenty-four 

fish: 12 fishes from Riacho da Cachoeiras dam and 

12 control fishes were used.  

Briefly, the mutagenicity test was carried out in 

blood samples obtained by gill puncture using 

heparinized syringes. After collection, three blood 

smears were prepared per animal.  Then the slides 

were fixed with ethanol P. A. and stained with 10% 

Giemsa. A total of 1000 erythrocytes per animal 

were assessed using a 1000 x oil-immersion lens.  

Statistical analysis 

Statistical analysis was performed using SPSS 20. 

The results obtained of physicochemical, metal and 

radon analysis were evaluated by descriptive analysis 

and compared with the guideline of water quality for 

human consumption (CONAMA, 2005; EPA, 

1994). Mutagenicity effect in Tradescantia pallida was 

statistically analyzed by comparison with control 

groups using Dunnett’s t-test and for O. niloticus 

erythrocytes Mann-Whitney U test.  

Results and discussion 

The present study evaluated the water quality 

from the Riacho das Cachoeiras Dam taking into 
account potential natural contaminants presents in 
the environment and not included in conventional 
evaluation of water potability. 

Analysis of water 

Some raw physicochemical characteristics of 

water from the Riacho das Cachoeiras dam are 
shown in Table 1. Turbidity, pH, and dissolved 
oxygen were within normal levels. Nevertheless, a 
high conductivity in all sampled points was observed 
(CONAMA, 2005; CETESB, 2009). The former 
parameters describe a non-eutrhofic environment. 
The latter, can be interpreted as result of the low 
filled level and a concentration of mineral substances 
coming from the lixiviation and run off proceses 
from earth's crust. 

Table 1. Physicochemical characteristics of water samples from 
the Riacho das Cachoeiras dam 

Variable Guideline 

P1 

P2 

P3 

pH 

6.0 - 9.0 

8.56 

8.59 

8.58 

Turbidity /NTU 

40 

14.9 

12.1 

13.6 

Temperature (ºC) 

26.0 

25.7 

26.0 

Conductivity (μS cm

-1

) 100

a

 4135* 

4156* 

4179* 

Disolved oxigen (mg L

-1

) >6  10.5 9.5 9.6 

Depth (m) 

1.9 

3.1 

1.9 

NTU = Nephelometric Turbidity Units.  All the results were in accordance with the 
national guideline (CONAMA, 2005, CETESB, 2009). * Above reference value. 

In Table 2, is presented the concentration of the 

11 metals analyzed. Al, Cd, Ni and Pb, were above 

the national guideline (CONAMA, 2005). 

The presence of metals into a particular 

environment can be the result for the ocurrence of 

natural and/or anthropogenic sources. The lack of 

industrial activity near the dam and the absence of 

waste drainage from the Lajes Pintadas city into the 

water reservoir, discarded these anthropic 

contamination sources. Other activities such as the 

use of fertilizers or other domestic products could 

be considered as as low-probability and then 

neglected as potential contributors to the metal 

levels observed (Iqbal, Tirmizi, & Shah, 2013; Iqbal 

& Shah, 2011). Natural sources can strongly explain 

the levels of metal found. The stored water 

exclusively comes from rain. Moreover, the granitic 

composition of the surface earth crust, contribute to 

reject the possibility of water transference from 

other source such as a contaminated phreatic layer. 

Therefore, in this particular scenario the leaching 

process of minerals from hearth crust is the most 

probable source of those elements found (CPRM, 

2014; Carvalho et al., 2012).  

A particular high level of lead was established. 

This element is the terminal product of uranium 
degradation (Robertson, Allen, Laney, & Curnow, 
2013). The lead contamination could be explained in 
addition to minerals lixiviation process, as result of 
the uranium natural degradation present in the 
studied region (CPRM, 2014; Geras’kin et al., 2007; 
Motoki, Campos, Fonseca, & Motoki, 2012). 
Nevertheless, such speculation needs to be verified 
through a future isotopic analysis aiming to 
understand the sources of lead involved (Cheng & 
Hu, 2010). 

The hazard characterization of water samples for 

human consumption through Radon content is 
shown in Table 3. Mean Radon level in water 
samples was quite constant in all the dam and 
significantly high (expressed as mean ± SD): 
60.0±7.3 Bq L

-1

 five-seven times higher than the 

EPA Guideline of 11 Bq L

-1

. The Uranium-rich 

pegmatitic rocks described in the region explains the 
natural origin of radon (CPRM, 2014). 

 

/work/vetindex/tasks/simple_ojs_harvester/journals/full_text-html.html
background image

Influence of natural radon and metal contamination on surface water quality 

279 

Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 275-282, July-Sept., 2017 

 

Table 2. Levels of metals (mg L

-1

) in water samples from the Riacho das Cachoeiras dam. 

Metal 

P1 

P2 

P3 

CONAMA 

LOD 

Al 

0.229 ± 0.050

a

 

0.225 ± 0.020

a

 

0.240 ± 0.042

a

 

0.200 

<0.050 

Cd 

0.012 ± 0.004

a

 

0.014 ± 0.003

a

 

0.013 ± 0.002

a

 

0.010 

<0.010 

Co 

0.119 ± 0.005 

0.121 ± 0.021 

0.136 ± 0.003 

0.200 

<0.030 

Cu 

<0.010 

<0.010 

<0.010 

0.013 

<0.010 

Pb 

0.220 ± 0.030

a

 

0.300 ± 0.000

a

 

0.215 ± 0.027

a

 

0.033 

<0.030 

Cr 

0.013 ± 0.004 

0.023 ± 0.002 

0.018 ± 0.002 

0.050 

<0.010 

Fe 

1.974 ± 0.174 

0.877 ± 0.033 

1.575 ± 0.202 

5.000 

<0.010 

Mn 

0.038 ± 0.014 

0.037 ± 0.012 

0.037 ± 0.010 

0.500 

<0.010 

Ni 

0.078 ± 0.011

a

 

0.122 ± 0.004

a

 

0.108 ± 0.006

a

 

0.025 

<0.030 

Ag 

<0.030 

<0.030 

<0.030 

0.050 

<0.030 

Zn 

0.035 ± 0.005 

0.035 ± 0.001 

0.041 ± 0.001 

5.000 

<0.010 

Results represented as mean ± SD obtained through the analysis of every point sampled per triplicated. Comparison of the results with the reference value of 

water quality: (a) Above national guidelines. LOD = Limit of detection of the method applied. 

The main source of exposure considered in risk 

assessment due to 

222

Rn exposure has been inhaled 

air (IAEA, 2009; WHO, 2009). Risk management in 

radon contaminated areas includes preventive 

costless actions against radon exposure (through 

inhaled air) such as house aeration (WHO, 2009). 

Especially  in  warm  regions  such  as  the  case  of  the 

Brazilian northeast, this action is naturally 

performed helping to reduce and/or prevent the 

exposure. Unlike, water from Uranium-rich regions 

can become a constant source to radon exposure 

(Geras'kin et al., 2007; Al Zabadi, Musmar, Issa, 

Dwaikat, & Saffarini, 2012; Murat Saç et al., 2014) 

especially where the accessibility to water supply is 

restricted as the case of Lajes Pintadas city. In this 

context, the importance to understand water as 

source of exposure is enhanced. The results 

obtained in this work, revealed by the first time 

radon water contamination describing the health 
hazard related to the natural radioactivity present in 

the Riacho das Cachoeira dam. 

Table 3. Radon content in water samples from the Riacho das 
Cachoeiras dam. 

Sample point 

EPA, 1994 

Radon (Bq L

-1

P1 

11 Bq L

-1

 

61.8 ± 8.7 

P2 

11 Bq L

-1

 

60.7 ± 7.5 

P3 

11 Bq L

-1

 

60.4 ± 7.4 

Results represented as mean ± SD. N = number of samples analyzed per point.  
* Results over the EPA guideline of 11Bq L

-1

 (300 pCi L

-1

). 

Mutagenic analysis 

Mutagenic assays have been very useful tools for 

detecting genetic damage caused by exposure to 

xenobiotics in plants, animals and humans (Garcia et 

al., 2011; Hoshina et al., 2008; Fenech et al., 2011).  

Trad-MCN  

Trad-MCN, have been used for testing a wide 

range of chemicals and complex mixtures of 

substances from environmental origin (Misík et al., 
2011; Garcia et al., 2011; Thewes et al., 2008).  

Mutagenic effect of water samples from Riacho 

das Cachoeira dam using Trad-MCN test is 

represented in Figure 2. A significant mutagenic 

effect was observed in all the samples tested, 

representing between 50 and 70% of the effect 

observed in the positive control group and more 

than six times higher than the effect observed in the 

negative control group. 

 

 

Figure 2. Analysis of mutagenic effect of water samples from 
Riacho das Cachoeira dam using Trad-MCN test. NC = 
negative control; PC = positive control. Results represented as 
mean ± SD. * Statistical difference, Dunnet test (P <0.001). 

Oreochromis niloticus MN 

Oreochromis niloticus has been widely used for 

analysis of chromosomal damage in impacted 
environments (Hoshina et al., 2008; Soliman & 
Ibrahim, 2012; Salvagni, Ternus, & Fuentefria, 
2011). The Micronuclei frequency found in O. 
niloticus
 erythrocytes from Riacho das Cachoeira 
dam is represented in Figure 3. 

A significant increment in micronuclei 

frequency in O. niloticus erythrocytes from Riacho 
das Cachoeira dam was observed, reinforcing the 
Trad-MCN results.  

The mutagenic effect observed in the species 

analyzed lead to reach additional observations. By 

one hand Trad-MCN was the most sensitive species 

that lead to detect acute mutagenic effect of the 

toxic/s compound/s present in water from Riacho 

/work/vetindex/tasks/simple_ojs_harvester/journals/full_text-html.html
background image

280 

Dantas et al. 

Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 275-282, July-Sept., 2017 

das Cachoeiras Dam in a short period of exposure 
(12 hours of exposure). Moreover, the frequency of 

micronuclei in O.  niloticus erythrocytes describes a 

chronic effect due to the exposure to mutagenic 

substance/s. Nevertheless, it is needed to highlight 

that the negative conditions represented by a high 

conductivity could influence the elicited effect 

observed.  

 

Figure 3. Micronuclei Frequency in erythrocytes of O. niloticus 

from Riacho das Cachoeira dam. C = control fish; RCD = 
Riacho das Cachoeiras dam fishes. Results represented as mean ± 
SD. * Statistical difference, Mann–Whitney U test (P <0.001). 

A variety of studies indicate the presence of 

heavy metals in complex environmental mixtures 

such as water samples from different natural sources 

as inducers of mutations in the genetic material 

(Patel, Lynch, Ruff, & Reynolds, 2012). Al, Cd, Ni 

and Pb have been widely linked with genotoxic and 

mutagenic effect (Bal, Protas, & Kasprzak, 2011; 

Lima et al., 2011). The Lead levels found in this 

work were seven fold the guideline value 

considered. Lead toxicity has been widely in vivo and 

in vitro studied. This metal is related to indirect 

mechanisms of genotoxicity through the alteration 

of cell functioning by mean the production of free 

radicals and the inhibition of DNA repair (García-

Lestón, et al., 2010; Kasten-Jolly & Lawrence, 2014).  

Radon ionizing radiation can directly affect the 

genetic material getting as consequences mutations, 

chromosome aberrations, sister chromatic exchange 

and micronuclei induction, or indirectly by the 

generation of reactive oxygen species, contributing 

to the mutagenic effect observed (Robertson et al., 

2013; UNSCEAR, 2000). 

Nevertheless, the role of the contaminants taken 

into account in this work and their relationship with 

the mutagenic effect observed is difficult to 

understand. By one hand the complexity of the 

composition of toxicological interest substances 

could lead to a synergic effect between them 

(UNSCEAR, 2000). On the other hand, in the case 

of heavy metals on aquatic compartments they can 

suffer physical and chemical modifications such as 

quelational effect along with alteration due to 

colloidal formation processes, affecting their 

bioavailability and consequently the expected 

toxicological effect (Mager, Esbaugh, Brix, Ryan, & 

Grosell, 2011; Rodgher & Espíndola, 2008). Three 

previous studies performed in the Brazilian 

northeast for this group, revealed mutagenic effect 

of water pollution/contamination from another 

reservoir (Lucrecia Dam and Extremoz lake) 

through Trad-MCN and micronuclei test in O. 

niloticus erythrocytes (Garcia et al., 2011; Barbosa, 

Cabral, Ferreira, Agnez-Lima, & Medeiros, 2010; 

Marcon, et al., 2010). In all cases an increased 

micronuclei frequency was observed in a magnitude 

significatively lower than the observed effect in this 

work. Is interesting to note that metal content was 

quite similar among the three works and lead levels 

were within the considered guideline level. These 

observations lead to hypothesize that the increased 

mutagenic damage observed was directly related to 

an additive or synergic mutagenic effect mainly due 

to the presence of a high radon and lead 

concentrations in the water of the Riacho das 

Cachoeira dam (García-Lestón et al., 2010). 

Conclusion 

The water quality of Riacho das Cachoeiras dam 

is affected for the presence of toxic substances, 

mainly due to high levels of lead and Radon, 
characterizing the source of water as not safe for 

human consumption. The mutagenic effects 

observed in two species confirm the unhealthy water 

for living systems and describe a hazardous source 

for the population of Lajes Pintadas City. Currently, 

this research group is performing a risk assessment 

aiming to understand role of natural radioactivity 

with the incidence of illness (mainly the high rate of 

oropharynx, stomach and lung cancers) observed in 

the population of Lajes Pintadas City.

 

Acknowledgements 

The authors are grateful for the financial support 

in this research to: Coordenação de Aperfeiçoamento de 

Pessoal de Nível Superior (CAPES) and Conselho 

Nacional de Desenvolvimento Científico e Tecnológico 
(CNPq). 

References 

Al Zabadi, H. A., Musmar, S., Issa, S., Dwaikat, N., & 

Saffarini, G. (2012). Exposure assessment of radon in 
the drinking water supplies: a descriptive study in 
Palestine. BMC Research Notes, 5(1), 29. 

/work/vetindex/tasks/simple_ojs_harvester/journals/full_text-html.html
background image

Influence of natural radon and metal contamination on surface water quality 

281 

Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 275-282, July-Sept., 2017 

American Public Health Association, American Water 

Works Association, Water Environment Federation 
[APHA, AWWA, WPCF]. (2005) Standard Methods for 
the Examination of Water and Wastewater
, (21th ed.), 
Washington, DC: American Public Health 
Association. 

Bal, W., Protas, A. M., & Kasprzak, K. S. (2011). 

Genotoxicity of metal ions: chemical insights. Metal 
Ions in Life Science, 8
, 319-373. 

Barbosa, J. S., Cabral, T. M., Ferreira, D. N., Agnez-Lima, 

L. F., & de Medeiros, S. R. B. (2010). Genotoxicity 
assessment in aquatic environment impacted by the 
presence of heavy metals. Ecotoxicology Environmental 
Safety, 73
(3), 320-325. 

Beyersmann, D., & Hartwig, A. (2008). Carcinogenic 

metal compounds: recent insight into molecular and 
cellular mechanisms. Archives of Toxicology, 82(8), 493-
512. 

Bonotto, D. M. (2014). 

222

Rn, 

220

Rn and other dissolved 

gases in mineral waters of southeast Brazil. Journal of 
Environmental Radioactivity, 132
, 21-30. 

Carvalho, C. S., Bernusso, V. A., Araújo, H. S. S., 

Espíndola, E. L. G., & Fernandes, M. N. (2012). 
Biomarker responses as indication of contaminant 
effects in Oreochromis niloticus.  Chemosphere, 89(1), 60-
69.  

Çavas, T., & Ergene-Gözükara, S. (2005). Induction of 

micronuclei and nuclear abnormalities in Oreochromis 
niloticus
 following exposure to petroleum refinery and 
chromium processing plant effluents. Aquatic 
Toxicology, 74
(3), 264-271. 

Cheng, H., & Hu, Y. (2010). Lead (Pb) isotopic 

fingerprinting and its applications in lead pollution 
studies in China: A review, Environmental Pollution, 
158
(5), 1134-1146. 

Companhia Ambiental do Estado de São Paulo 

[CETESB]. (2009). Qualidade das águas interiores no 
Estado de São Paulo. Significado ambiental e sanitário das 
variáveis de qualidade das águas e dos sedimentos e 

metodologias analíticas e de amostragem. Retrieved from 
http://cetesb.sp.gov.br/aguas-interiores/wp-
ontent/uploads/sites/32/2013/11/variaveis.pdf 

Companhia de Pesquisa de Recursos Minerais [CPRM]. 

(2014). Serviço Geologico do Brasil. Geobank.Gis. 
Mapa Geológico do Estado do Rio Grande do Norte
Retrieved from http://geobank.sa.cprm.gov.br 

Conselho Nacional do Meio Ambiente [CONAMA]. 

(2005).  Resolução no. 357. Ministério do Meio Ambiente, 
MMA, Brasília, Distrito Federal.
 Retrieved from http:// 
www.mma.gov.br/ 

Environmental Protection Agency [EPA]. (1994). Report 

to the United States Congress on Radon in Drinking 
Water: Multimedia Risk and Cost Assessment of 
Radon. Retrieved from http://yosemite.epa.gov/water/ 
owrccatalog.nsf/7322259e90d060c885256f0a0055db68/
7817d824b87e032c85256d83004fd819!opendocument 

Fenech, M., Holland, N., Zeiger, E., Chang, W. P., 

Burgaz, S., Thomas, P., … Bonassi, S. (2011). The 
HUMN and HUMNxL international collaboration 

projects on human micronucleus assays in 
lymphocytes and buccal cells-past, present and future. 
Mutagenesis, 26(1), 239-245. 

Garcia, A. C. F. S., Marcon, A. E., Ferreira, D. M., Santos, 

E. A. B., Amaral, V. S., & Medeiros, S. R. B. (2011). 
Micronucleus study of the quality and mutagenicity of 
surface water from a semi-arid region. Journal of 
Environmental Monitoring, 13
(12), 3329-3335. 

García-Lestón, J., Méndez, J., Pásaro, E., & Laffon, B. 

(2010). Genotoxic effects of lead: an updated review. 
Environment International, 36(6), 623-636. 

Geras'kin, S. A., Evseeva, T. I., Belykh, E. S., Majstrenko, 

T. A., Michalik, B., & Taskaev, A. I. (2007). Effects on 
non-human species inhabiting areas with enhanced 
level of natural radioactivity in the north of Russia: a 
review.  Journal of Environmental Radioactivity, 94(3), 
151-182. 

Hoshina, M. M, Angelis, D. F., & Marin-Morales, A. A. 

(2008). Induction of micronucleus and nuclear 
abnormalities in fish (Oreochromis niloticus) by a 
petroleum refinery effluent.  Mutation Research/Genetic 
Toxicology and Environmental Mutagenesis, 656
(1-2), 44-48. 

Instituto Brasileiro de Geografia e Estatística [IBGE]. 

(2016). Retrieved from http://www.ibge.gov.br 

Instituto Nacional do Semiarido [INSA]. (2014). Água no 

semiárido brasileiro.  Retrieved from http://www.insa. 
gov.br/es/investigacion-y-proyectos/agua-2/ 

International Agency for Research on Cancer [IARC]. 

(2009) A review of human carcinogens. Monographs on the 
evaluation of carcinogenic risks to humans. 
Retrieved from 
http://monographs.iarc.fr/ENG/Monographs/vol100D/
mono100D.pdf  

International Atomic Energy Agency [IAEA]. (2009). 

World Distribution of Uranium Deposits (UDEPO) with 
Uranium Deposit Classification
.  Retrieved from 
http://www-pub.iaea.org/MTCD/publications/PDF/ 
te_1629_web.pdf 

Iqbal, J., & Shah, M. H. (2011). Distribution, correlation 

and risk assessment of selected metals in urban soils 
from Islamabad, Pakistan. Journal of Hazardous 
Materials, 192
(2), 887-898. 

Iqbal, J., Tirmizi, S. A., & Shah, M. H. (2013). Statistical 

apportionment and risk assessment of selected metals 
in sediments from Rawal Lake (Pakistan). 
Environmental Monitoring and Assessment, 185(1), 729-
743.  

Kasten-Jolly, J., & Lawrence, D. A. (2014). Lead 

modulation of macrophages causes multiorgan 
detrimental health effects. Journal of Biochemical and 
Molecular Toxicology, 28
(8), 355-372. 

Kotrappa, P. (2008). Long term stability of electrets used 

in electret ion chambers. Journal of Electrostatics, 66(7-
8), 407-409. 

Leal, T. C. S., Crispim, V. R., Frota, M. A., Kelecom A., & 

da Silva, A. X. (2008).  Use of a bioindicator system in 
the study of the mutagenetical effects in the 
neighborhoods of deposits of radioactive waste. Applied 
Radiation and Isotopes, 66
(4), 535-538. 

/work/vetindex/tasks/simple_ojs_harvester/journals/full_text-html.html
background image

282 

Dantas et al. 

Acta Scientiarum. Biological Sciences 

Maringá, v. 39, n. 3, p. 275-282, July-Sept., 2017 

Lima, P. D., Vasconcellos, M. C., Montenegro, R. C., 

Bahia,  M.  O.,  Costa,  E.  T.,  Antunes,  L.  M.,  & 
Burbano, R. R. (2011). Genotoxic effects of 
aluminum, iron and manganese in human cells and 
experimental systems: a review of the literature.

 

Human & Experimental Toxicology, 30(10),1435-1444. 

Ma, T. H. (1981). Tradescantia micronucleus bioassay and 

pollen tube chromatid aberration test for in situ 
monitoring and mutagen screening. Environmental 
Health Perspectives, 37
, 85-90. 

Mager, E. M., Esbaugh, A. J., Brix, K. V., Ryan, A. C., & 

Grosell, M. (2011). Influences of water chemistry on 
the acute toxicity of lead to Pimephales promelas and 
Ceriodaphnia dubia.  Comparative Biochemistry and 
Physiology Part C: Toxicology & Pharmacology, 153
(1), 82-90.  

Marcon, A. E., Ferreira, D. M., Moura, M. F. V., Campos, 

T. F. C., Amaral, V. S., Agnez-Lima, L. F., & 
Medeiros, S. B. R. (2010). Genotoxic analysis in 
aquatic environment under influence of cyanobacteria, 
metal and radioactivity. Chemosphere, 81(6), 773-780. 

Martínez, D. S. T., Alvez, O. L., & Barbieri, E. (2013). 

Carbon nanotubes enhanced the lead toxicity on the 
freshwater fish. Journal of Physics, 429(1), 1-8. 

Misík, M., Ma, T-H., Nersesyan, A., Monarca, S., Kim, J. 

K., & Knasmueller, S. (2011). Micronucleus assays 
with Tradescantia pollen tetrads: an update. Mutagenesis, 
26
(1), 215-221. 

Motoki, A. Campos, T. F. da C., Fonseca, V. P., & 

Motoki, K. F. (2012). Subvolcanic neck of Cabugi 
Peak, State of Rio Grande do Norte, Brazil, and origin 
of its landform. Rem: Revista Escola de Minas, 65(2), 
195-206. 

Murat Saç, M., Aydemir, S., Içhedef, M., Kumru, M. N., 

Bolca, M., & Ozen, F. (2014). Natural radioactivity 
levels of geothermal waters and their influence on soil 
and agricultural activities. Radiation Protection Dosimetry, 
158
(2), 148-155. 

Patel, E., Lynch, C., Ruff, V., & Reynolds, M. (2012). Co-

exposure to nickel and cobalt chloride enhances 
cytotoxicity and oxidative stress in human lung 
epithelial cells. Toxicology and Applied Pharmacology, 
258
(3), 367-375. 

Robertson, A., Allen, J., Laney, R., & Curnow, A. (2013). 

The cellular and molecular carcinogenic effects of 
radon exposure: a review. International Journal of 
Molecular Sciences, 14
(7), 14024-14063. 

Rodgher, S., & Espíndola, E. L. G. (2008). Effects of 

interactions between algal densities and cadmium 
concentrations on Ceriodaphnia dubia fecundity and 
survival.  Ecotoxicology and Environmental Safety, 71(3), 
765-773. 

Salvagni, J., Ternus, R. Z., & Fuentefria, A. M. (2011). 

Assessment of the genotoxic impact of pesticides on 
farming communities in the countryside of Santa 
Catarina State, Brazil. Genetics and Molecular Biology, 
34
(1), 122-126. 

Santos, T. O., & Bonotto, D. M. (2014).

 222

Rn, 

226

Ra and 

hydrochemistry in the Bauru Aquifer System, São José 
do Rio Preto (SP), Brazil. Applied Radiation and Isotopes, 
86
, 109-117. 

Soliman, M. F., & Ibrahim, M. M. (2012). Monogenean 

community structure of Oreochromis niloticus in relation 
to heavy metal pollution and host reproductive cycle, 
Journal of the Egyptian Society of Parasitology, 42(1), 11-24. 

Thewes, M. R., Endres Junior, D., & Droste, A. (2011). 

Genotoxicity biomonitoring of sewage in two 
municipal waste water treatment plants using the 
Tradescantia pallida var. purpurea bioassay. Genetics and 
Molecular Biology, 34
(4), 689-693. 

United Nations Scientific Committe on the Effects of 

Atomic Radiation [UNSCEAR]. (2000). Annex H. 
Combined effects of radiation and other agents
. Retrieved 
from http://www.unscear.org/unscear/publications/ 
2000_2.html  

Vincent-Huber, F., Heas-Moisan, K., Munschy, C., & 

Tronczynski, J. (2012). Mutagenicity and genotoxicity 
of suspended particulate matter in the Seine river 
estuary.  Mutation Research/Genetic Toxicology and 
Environmental Mutagenesis
741(1-2), 7-12. 

World Health Organization [WHO]. (2009) WHO 

Handbook  on  Indoor  radon:  a  Public  Health  Perspective. 

Geneva, World Health Organization.  Retrieved from 
http://whqlibdoc.who.int/publications/2009/97892415
47673_eng.pdf  

 

 

Received on May 11, 2015. 

Accepted on May 2, 2017. 

 

 

License information: This is an open-access article distributed under the terms of the 
Creative Commons Attribution License, which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

 

 

Apontamentos

  • Não há apontamentos.





Acta Scientiarum. Biological Sciences
 
Avenida Colombo, 5790
CEP 87020-900 - Maringá - PR
Tel: (+55 44) 3011-4253
Fax: (+55 44) 3011-4253
 
actabiol@uem.br
http://periodicos.uem.br/ojs/index.php/ActaSciBiolSci/